301 research outputs found

    Semantic Segmentation of Human Model Using Heat Kernel and Geodesic Distance

    Get PDF
    A novel approach of 3D human model segmentation is proposed, which is based on heat kernel signature and geodesic distance. Through calculating the heat kernel signature of the point clouds of human body model, the local maxima of thermal energy distribution of the model is found, and the set of feature points of the model is obtained. Heat kernel signature has affine invariability which can be used to extract the correct feature points of the human model in different postures. We adopt the method of geodesic distance to realize the hierarchical segmentation of human model after obtaining the semantic feature points of human model. The experimental results show that the method can overcome the defect of geodesic distance feature extraction. The human body models with different postures can be obtained with the model segmentation results of human semantic characteristics

    An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism

    Get PDF
    Fruit fly optimization algorithm (FOA) invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO) algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA), by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA

    Global Nonlinear Kernel Prediction for Large Dataset with a Particle Swarm Optimized Interval Support Vector Regression

    Get PDF
    A new global nonlinear predictor with a particle swarm-optimized interval support vector regression (PSO-ISVR) is proposed to address three issues (viz., kernel selection, model optimization, kernel method speed) encountered when applying SVR in the presence of large data sets. The novel prediction model can reduce the SVR computing overhead by dividing input space and adaptively selecting the optimized kernel functions to obtain optimal SVR parameter by PSO. To quantify the quality of the predictor, its generalization performance and execution speed are investigated based on statistical learning theory. In addition, experiments using synthetic data as well as the stock volume weighted average price are reported to demonstrate the effectiveness of the developed models. The experimental results show that the proposed PSO-ISVR predictor can improve the computational efficiency and the overall prediction accuracy compared with the results produced by the SVR and other regression methods. The proposed PSO-ISVR provides an important tool for nonlinear regression analysis of big data

    Analysis on Lung Cancer Survival from 2001 to 2007 in Qidong, China

    Get PDF
    Background and objective Lung cancer is one of the most important malignancies in China. Survival rates of lung cancer on the population-based cancer registry for the years 2001-2007 in Qidong were analysed in order to provide the basis for the prognosis assessment and the control of this cancer. Methods Total 4,451 registered lung cancer cases was followed up to December 31st, 2009. Death certificates only (DCO) cases were excluded, leaving 4,382 cases for survival analysis. Cumulative observed survival rate (OS) and relative survival rate (RS) were calculated using Hakulinen’s method performed by the SURV 3.01 software developed at the Finnish Cancer Registry. Results The 1-, 3-, and 5-year OS rates were 23.73%, 11.89%, 10.01%, and the RS rates were 24.86%, 13.69%, 12.73%, respectively. The 1-, 3-, and 5-year RS of males vs females were 23.70% vs 27.89%, 12.58% vs 16.53%, and 11.73% vs 15.21%, respectively, with statisitically significant differences (χ2=13.77, P=0.032). RS of age groups of 15-34, 35-44, 45-54, 55-64, 65-74 and 75+ were 35.46%, 17.66%, 11.97%, 13.49%, 10.61%, 15.14%, respectively. Remarkable improvement could be seen for the 5-year RS in this setting if compared with that for the years 1972-2000. Conclusion The lung cancer survival outcomes in Qidong have been improved gradually for the past decades. Further measures on the prevention, diagnosis and treatment of lung cancer should be taken

    3-D printed UWB microwave bodyscope for biomedical measurements

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this letter, a three-dimensional (3-D) printed compact ultrawideband (UWB) extended gap ridge horn (EGRH) antenna designed to be used for biological measurements of the human body is described. The operational frequency covers the microwave band of interest from 0.5 to 3.0 GHz (for an S 11 under -7 dB). The 3-D printed EGRH antenna is dielectrically matched to the permittivity of the human body, and because of its compactness, it can be visualized as a general-purpose microwave probe among the RF biomedical community. The probe has proven its capability as a pass-through propagation sensor for different parts of the human body and as a sensor detecting a 1 cm diameter object placed inside an artificial head phantom.Peer ReviewedPostprint (author's final draft

    Resampling to Speed Up Consolidation of Point Clouds

    Get PDF

    Neuroendocrine-Based Cooperative Intelligent Control System for Multiobjective Integrated Control of a Parallel Manipulator

    Get PDF
    This paper presents a novel multiloop and Multi-objective cooperative intelligent control system (MMCICS) used to improve the performance of position, velocity and acceleration integrated control on a complex multichannel plant. Based on regulation mechanism of the neuroendocrine system (NES), a bioinspired motion control approach has been used in the MMCICS which includes four cooperative units. The planning unit outputs the desired signals. The selection unit chooses the real-time dominant control mode. The coordination unit uses the velocity Jacobian matrix to regulate the cooperative control signals. The execution unit achieves the ultimate task based on sub-channel controllers with the proposed hormone regulation self-adaptive Modules (HRSMs). Parameter tuning is given to facilitate the MMCICS implementation. The MMCICS is applied to an actual 2-DOF redundant parallel manipulator where the feasibility of the new control system is demonstrated. The MMCICS keeps its subchannels interacting harmoniously and systematically. Therefore, the plant has fast response, smooth velocity, accurate position, strong self-adaptability, and high stability. The HRSM improves the control performance of the local controllers and the global system as well, especially for manipulators running at high velocities and accelerations

    Lethal effects and mechanism of infrared radiation on Sitophilus zeamais and Tribolium castaneum in rough rice: Poster

    Get PDF
    The objective of this study was to investigate the characteristics of adult Sitophilus zeamais and Tribolium castaneum, and the 21.1% dry base (d.b.) MC of rough rice by ATR-FTIR spectra, and determine the theoretical optimum infrared (IR) heating temperature of the tested samples. In laboratory experiments, a ceramic IR drying device was used to heat infested rough rice to research the mortality of Sitophilus zeamais and Tribolium castaneum, the drying characteristics of rough rice, and milling quality. The theoretical calculation optimum temperature of IR heating was 300 °C according to the results of FTIR spectra. In addition, the effects of the different IR radiation intensities and heated rough rice temperatures on mortality of insects, moisture removal, and milling quality were determined in this text. A high insect mortality, heating rate and corresponding high moisture removal were achieved by using IR heating. After heating, tempering process significantly increased insect mortality when the heated tempered rice temperature was less than 55 °C, and improve moisture removal and milling quality of rough rice during nature air cooling. When the rice heated under the IR radiation intensity of 2780 W/m2 for 110 s, the rice temperature reached 60.2° ± 0.5°C, 100% mortality of S. zeamais and T. castaneum, and 3.97 percentage points of moisture removal during the heating period after tempering and natural cooling. In addition, the high rice milling quality can be achieved after tempering treatment. Therefore, it can be concluded that the optimum conditions of simultaneous disinfestation and drying were 60 °C rice temperature under the IR radiation intensity of 2780 W/m2, followed by tempering and natural cooling.The objective of this study was to investigate the characteristics of adult Sitophilus zeamais and Tribolium castaneum, and the 21.1% dry base (d.b.) MC of rough rice by ATR-FTIR spectra, and determine the theoretical optimum infrared (IR) heating temperature of the tested samples. In laboratory experiments, a ceramic IR drying device was used to heat infested rough rice to research the mortality of Sitophilus zeamais and Tribolium castaneum, the drying characteristics of rough rice, and milling quality. The theoretical calculation optimum temperature of IR heating was 300 °C according to the results of FTIR spectra. In addition, the effects of the different IR radiation intensities and heated rough rice temperatures on mortality of insects, moisture removal, and milling quality were determined in this text. A high insect mortality, heating rate and corresponding high moisture removal were achieved by using IR heating. After heating, tempering process significantly increased insect mortality when the heated tempered rice temperature was less than 55 °C, and improve moisture removal and milling quality of rough rice during nature air cooling. When the rice heated under the IR radiation intensity of 2780 W/m2 for 110 s, the rice temperature reached 60.2° ± 0.5°C, 100% mortality of S. zeamais and T. castaneum, and 3.97 percentage points of moisture removal during the heating period after tempering and natural cooling. In addition, the high rice milling quality can be achieved after tempering treatment. Therefore, it can be concluded that the optimum conditions of simultaneous disinfestation and drying were 60 °C rice temperature under the IR radiation intensity of 2780 W/m2, followed by tempering and natural cooling
    • …
    corecore